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A stochastic optimal control procedure, based on a perturbation criterion, is developed to
study e!ects of small travel speed variations on active suspensions of vehicles. The vehicle
speed is regarded as an uncertain parameter that randomly varies around a measured
(equilibrium) mean value. The approach here separates the active suspension forces into two
control (laws) forces. The "rst force is termed steady (unperturbed) control force that isolates
a vehicle body from a roadway disturbance and functions in large (mean) nominal speed
variations starting from low to very high. The second force is termed a perturbation control
force that accommodates changes in the steady force due to small speed variations.
Eventually, after justifying the perturbation approach, it is shown how these two control
forces could be combined to function only in terms of measured signals. The investigation is
made of two di!erent suspension structures for two levels of roadway roughness. Although
the approach to the problem is approximate and needs perfect knowledge of all the state
variables, the results show that there are noticeable variations to the steady control laws for
even small deviations from nominal travel speed. In fact, the control procedure developed
here as a design tool is meaningful since optimum vibration control problems are not easy
to formulate when non-stationary random vibrations are considered. Also, it can be
generalized with care to handle some parametric uncertainty problems.

( 2000 Academic Press
1. INTRODUCTION

Types of vehicle suspensions range from passive systems with limited capabilities for
vibration suppression to active ones with high capabilities for vibration control
[1}7]. A good compromise for vibration control in so many engineering applications are
called semi-active systems [2]. Theoretical and experimental investigations of all types of
advanced vehicle suspensions have been enormous during the past few decades.
Publications concerning this topic have been extensively reviewed and classi"ed
[1]. In reference [1], the author has also provided a collection of publications that concern
the application of optimal control methods to the design of active suspensions. Recently,
a large number of publications dealt with the operation and distinguished performance
features of active and semi-active suspensions with preview action*see for instance
references [2,5].

Parametric uncertainty of the controlled suspension systems has been in the focus of the
application di$culties of these systems for many years. Many researchers have made
contributions to this issue, handling this problem in di!erent methods: starting with robust
controller designs, adaptive, closed-loop identi"cation-controller design methods, non-
linear, variable structure controllers, etc. [8}12].
022-460X/00/200857#19 $35.00/0 ( 2000 Academic Press



858 E. M. ELBEHEIRY
It was a common assumption in the majority of the publications mentioned above that
the vehicle is running on a stationary random road pro"le with a constant travel speed. In
practice, vehicles accelerate and decelerate on roads causing non-stationary vehicle
vibrations even when the randomness of the road pro"le is assumed stationary. Non-
stationary random vibrations of vehicles inevitably occur in practice for many reasons: (i)
the vehicle runs with variable speed on a rough road with spatial homogeneity, (ii) the
vehicle runs with constant or variable speed on spatially non-homogeneous terrain, and (iii)
the vehicle traversing a smooth surface at constant velocity suddenly encounters a spatially
homogeneous rough pro"le and continues to move with constant velocity. In the latter case
the vehicle response becomes stationary after a while. The authors in references [13}17]
have all discussed the basics of non-stationary vehicle vibrations, while the authors in
references [18}21] extended the optimal control methods for application to the active
control of non-stationary vibrations of ground vehicles. Despite the signi"cance of these
publications as pioneering e!orts in this direction, their design procedures are still in need of
further developments in order to bring these designs to meet the requirements of reality.

Using a perturbation criterion, e!ects of small travel speed variations on the response of
a one-d.o.f. vehicle model with passive suspension have been studied in reference [22]. The
authors showed that small #uctuations of travel speed can considerably a!ect the vehicle
response.

In this paper, we extend the perturbation criterion in reference [22] for investigating the
e!ects of small travel speed variations on active suspensions of vehicles by using a 2-d.o.f.
quarter car model. Stochastic optimal control methods are adapted in a new formulation to
suit the problem and then applied for generating steady and perturbation full-state control
laws. The steady control input isolates the car body from roadway disturbance while the
perturbation control input compensates for the small variations around a mean travelling
speed.

2. DERIVATION OF SYSTEM EQUATIONS

The 2-d.o.f. car model considered in this study is shown in Figure 1. It consists of an
unsprung mass, m

t
"40 kg, a sprung mass, m

b
"400 kg, and a tire sti!ness,

k
t
"190 000 N/m. The random function, X

r
(x), describes the vertical displacement of a road

pro"le from its mean level, and x is the horizontal position along the road. As the vehicle
travels along the road, its position is a function of time,

x"x (t), (1)

where t denotes time. If X1
r
(t) is the road height under the tire as a function of time that

corresponds to the space function, X1
r
(x), then these two functions are related such that

X1
r
(t)"X

r
(x (t)). (2)

If the car travels at a constant speed <
0
, then equation (1) becomes

x"x (t)"<
0
t, (3)

and equation (2) becomes

X1
r
(t)"X

r
(<

0
t) (4)



Figure 1. Quarter-car riding model.
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for corresponding x and t. For constant travel speed, if the function X
r
(x) is stationary and

Gaussian, then the function X1
r
(t) is also stationary and Gaussian. The equations of motion

as functions of time are

m
t
X1G

t
(t)#k

t
X1

t
(t)"!u6 (t)#k

t
X1

r
(t),

m
b
X1G

b
(t)"u6 (t).

(5)

The assumption of equation (4) can be slightly violated by considering a random travel
speed < (x) as a function of position x. By introducing the variables X

t
(x) and X

b
(x), where

X
t
(x)"X1G

t
(t) and X

b
(x)"X1

b
(t), the last two equations may be rewritten in terms of x as

follows:

m
t
<2(x)d2X

t
(x)/dx2#(m

t
< (x)d< (x)/dx)dX

t
(x)/dx#k

t
X

t
(x)"!u (x)#k

t
)X

r
(x),

m
b
<2(x)d2X

b
(x) /dx2#(m

b
< (x)d< (x)/dx)dX

b
(x)/dx"u(x).

(6)

It is assumed that< (x) is a stationary and Gaussian random function. This assumption can
be validated if <(x) involves only small travel speed variations around a nominal travel
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speed, <
0
, such that, E[<(x)]"<

0
, where E[ . ], stands for the expected value. Also, it is

assumed that < (x), and the road disturbance are two independent random functions,
such that EM< (x)X

r
(x)N"0. We de"ne the stationary non-Gaussian coe$cients of

equations (6) as

a
1
"m

t
<2(x), a

2
"m

b
<2(x),

b
1
"m

t
<(x)<@(x), b

2
"m

b
<(x)<@ (x), (7)

so that these equations can be rewritten in a convenient form as

a
1
(x)XA

t
(x)#b

1
(x)X@

t
(x)#k

t
X

t
"!u(x)#k

t
X

r
(x),

a
2
(x)XA

b
(x)#b

2
(x)X@

b
(x)"u (x),

(8)

where the prime denotes derivative with respect to x. Assuming small travel speed
variations around a nominal constant speed,<

0
, a perturbation solution can be sought if we

postulate that

<(x)"<
0
(x)#e<

1
(x), (9)

where e is a small perturbing parameter. A corresponding time function <M (t)"<
0
#e<M

1
(t)

is also assumed, such that

x (t)"P
t

<M (t) dt. (10)

Here, <
1
(x) is assumed to be a stationary zero-mean random function and completely

independent of the random function X
r
(x), that is, EM<

1
(x)N"0 and EM<

1
(x)X

r
(x)N"0.

In this case, it is possible to write the input control u(x) as

u (x)"u
0
(x)#eu

1
(x), (11)

where u
0
(x) is the steady (unperturbed) control input which isolates vehicle body from

roadway disturbance, u
1
(x) is the perturbation control law or the small deviation from the

steady control which compensates for the small speed #uctuation, and u (x) is the total
control input. The application of the perturbation technique described in Appendix A to
equations (8) results in the following two sets of equations:

XA
t0

(x)#(k
t
/m

t
<2

0
)X

t0
(x)"!(1/m

t
<2

0
)u

0
(x)#(k

t
/m

t
<2

0
)X

r
(x),

XA
b0

(x)"(1/m
b
<2

0
)u

0
(x),

(12)

XA
t1

(x)#(k
t
/m

t
<2

0
)X

t1
(x)"!(1/m

t
<2

0
)u

1
(x)!(2/<

0
)XA

t0
(x)<

1
(x)!(1/<

0
)X@

t0
(x)<@

1
(x),

(13)

XA
b1

(x)"(1/m
b
<2

0
)u

1
(x)!(2/<

0
)XA

b0
(x)<

1
(x)!(1/<

0
)X@

b0
(x)<@

1
(x).
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The set of equations (12) describes a steady car motion due to a roadway disturbance, X
r
, at

nominal speed <
0
, while the set of equations (13) expresses the car motion due to speed

#uctuation <
1
(x) around a mean value <

0
.

3. EXCITATION MODELS

A one-sided power spectrum that has been widely used in the literature for describing
roadway roughness as a stationary zero-mean stochastic process is [23]

SX
r
(X )"

2a
r
p2

n
1

(a2
r
#X2 )

, (14)

where X is the spatial angular frequency Mrad/mN, a
r
is a coe$cient depending on the shape

of road irregularities and p2 is the mean-square value of a random variable l(x) that
represents the road pro"le roughness. A road classi"cation based on this spectrum is shown
in Table 1.

E!ects of small random variation of speed on stationary roadways have to be analyzed.
Thus, the speed variations are due to simple tra$c constraints, simple inattention of the
driver and, if any, imperfection in speed control arrangements [22] like those modern driver
assistance systems [24, 25]. The vehicle engine would be another reason for such small
variations. Heavy braking actions when roadway bumps or holes are sighted are not
considered. It seems to be more appropriate if one considers a band-limited (spectrum)
stochastic process for the description of these variations. This brings a lot of de"ciencies to
the application of optimal control methods to our problem. Since the speed variations are
assumed to be small, it is expected that the particular assumed spectrum will not greatly
a!ect the "nal results. In this manner, the following power spectral density function is
assumed in this study for describing the speed #uctuation as a stationary zero-mean
stochastic process

S
v1

(X )"
R

v
(a2

v
#X2 )2

(15)

where R
v
is considered as a parameter that expresses the intensity of the velocity #uctuation

as a random process, and a
v

is a parameter. Note that the speci"c form of spectrum
considered in equation (15) accounts partially for the speed variations being a band-limited
stoichastic process.

4. FORMULATION

The unperturbed and perturbation equations are treated separately. This facilitates the
understanding of the problem and makes it easy to study di!erent steady control law types
and their e!ect on both the steady response statistics and the perturbation control law.
TABLE 1

Road classi,cation

Road type a
r
(1/m) p (m)

Smooth 0)15 0)0087
Rough 0)45 0)0181



862 E. M. ELBEHEIRY
We de"ne a state variable vector X
0
"[X

t0
X

b0
X@

t0
X@

b0
]T by which the

unperturbed set of equations (12) can be written in a state-space form as

X@
0
"A3

0
X

0
#B3

0
u
0
#D3

0
X

r
,

X
c0
"C3

0
X

0
,

(16)

where A3
0
, B3

0
, D3

0
and C3

0
are constant matrices of appropriate dimensions, and X

c0
is

a vector of controlled outputs.
The road roughness as a coloured noise represented by equation (14) can be taken as the

output of a "rst order shaping "lter excited by a white noise w
r
(x) as follows:

l@"A
r
l#B

r
w
r
,

X
r
"C

r
l,

(17)

where E[w
r
(x)]"0, EMw

r
(x

1
)w

r
(x

2
)N"2a

r
p2d(x

1
!x

2
), and d is the Dirac delta function.

The value =
r
"2a

r
p2 expresses the intensity of the white-noise input w

r
. An augmented

state variable vector X
0
"[X

0
l]T enables one to write equations (16) and (17) in an

augmented state-space form as follows:

C
X@

0
l@ D"C

A
0

D
r

0 A
r
D C

X
0

l D#C
B

0
0 D u

0
#C

0

B
r
Dw

r
,

[X
c0

]"[C3
0

0] C
X

0
l D ,

(18)

where D
r
"D1

0
C

r
. Equations (18) can be rewritten as

X@
0
"A

0
X#B

0
u
0
#D

0
w

r
,

X
c0
"C

0
X

0
.

(19)

Similarly, if one de"nes a state-space vector, X
1
"[X

t1
X

b1
X@

t1
X@

b1
], a state-space

form for the perturbation set of equations (13) can be written as follows:

X@
1
"A3

1
X

1
#B3

1
u
1
#D3

1
<
1
#D3

2
<@

1
,

X
c1
"C3

1
X

1
.

(20)

The power spectral density function of equation (15) expresses the random velocity
#uctuation as a coloured noise which can be regarded as the output of a second order
shaping "lter excited by a white noise w

v
as follows:

f@"A
v
f#B

v
w
v
,

<"C f ,
(21)
1 v
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where E[w
v
]"0, EMw

v
(x

1
)w

v
(x

2
)N"nR

v
d (x

1
!x

2
) when we consider S

v1
(X ) as a

single-sided power spectral density function. The value =
v
"nR

v
can be regarded as the

intensity of the white-noise input w
v
. An augmented state variable vector X

1
"[X

1
f]T

makes it possible to write equations (20) and (21) in an augmented state-space form as
follows:

C
X@

1
f@ D"C

A3
1

D
v
(X

0
)

0 A
v
D C

X
1

f D#C
B3

1
0 D u

1
#C

0

B
v
Dw

v
,

[X
c1

]"[C3
1

0] C
X

1
f D ,

(22)

where [D
v
]"[D3

1
(X

0
) :D3

2
(X

0
)][C

v
]. The above state-space form can be rewritten as

X@
1
"A

1
(X

0
)X#B

1
u
1
#D

1
w

v
,

X
c1
"C

1
X

1
.

(23)

All the matrices which appear in the state-space forms (16)}(23) are shown in Appendix B.

5. OPTIMIZATION PROCEDURE

5.1. UNPERTURBED (STEADY) CONTROL LAW

First we deal with the steady control law u
0
. The statement of the LQG regulator

problem [26] is to minimize the following quadratic performance index:

J" lim
s?=

1

s
E G P

s

0

[XT
c0

uT
0
] C

R
2

R
3

RT
3

R
1
D C

X
c0

u
0
DdxH , (24)

subjected to the dynamic constraint equations (19). s is a space sampling length, and R
1
, R

2
,

and R
3

are weighting matrices. An optimal steady full-state control law may exist for an
in"nite-space regulator problem, such that

u*
0
(x)"K

0
X

0
(x), (25)

K
0
"!R~1

1
[BT

0
S
0
#RT

3
C

0
]. (26)

where K
0

is a constant feedback gain vector. This requires the solution of the following
algebraic Riccati equation:

S
0
[A

0
!B

0
R~1

1
RT

3
C

0
]#[A

0
!B

0
R~1

1
RT

3
C

0
]TS

0
!S

0
B
0
R~1

1
BT

0
S
0

#CT
0
[R

2
!R

3
R~1

1
RT

3
]C

0
"0.

(27)

The optimal performance index is given by

J*"tr[S
0
D

0
=

r
DT

0
]. (28)
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5.2. PERTURBATION CONTROL LAW

All the matrices in equation (23) are constant except a continuous-space matrix, A
1
(X

0
),

which contains the steady response statistics. This di$culty can be easily circumvented as
will be discussed later. At "rst, it will be assumed that there will be a feasible solution that
provides a continuous-space perturbation control law,

u*
1
(x)"K

1
(x)X

1
(x), (29)

K
1
(x)"!R~1

1
[BT

1
S
1
(x)#RT

3
C

1
], (30)

where K
1
(x) is partially space-varying matrix. This requires the solution of the following

di!erential Riccati equation:

S@
1
(x)"!S

1
(x)[A

1
(X

0
)!B

1
R~1

1
RT

3
]![A

1
(X

0
)!B

1
R~1

1
RT

3
]TS

1
(x)

#S
1
(x)B

1
R~1

1
BT

1
S
1
(x)!CT

1
[R

2
!R

3
R~1

1
RT

3
]C

1
,

(31)

with terminal conditions S
1
(s)"S. The steady-state performance index with zero initial

conditions is given by

J*
1
"tr C P

s

0

S
1
(x)D

1
=

v
DT

1
dxD . (32)

6. COMPUTATIONAL DETAILS

We "rst deal with "nding out the continuous-space perturbation control law u
1
(x) in

equation (29) of the perturbation state-space form which requires the solution of the
di!erential Riccati equation (31). It is well known that S

1
(x) exists if there are no modes of

[A
1
, B

1
, C

1
] which are observable, uncontrollable and unstable [26]. This condition is

violated by both the augmented state-space form of the perturbation equations in equation
(23) and that of the unperturbed equations in equation (19). It should be noticed that in the
state-space forms of equations (19) and (23) the sub-matrices (A3

1
, B3

1
, C3

1
) and (A3

0
, B3

0
, C3

0
)

are equal and constant, and satisfy the above-mentioned condition. One trick to solve the
algebraic Riccati equation in (27) or the di!erential Riccati equation in (31) is to partition
them [6]. We begin with the di!erential Riccati equation. The perturbation control law
u
1
(x) may be written as

u*
1
(x)"[K

11
:K

12
(x)] C

X
1

f D

"[!R~1
1

[B3 T
1
S
11
#RT

3
C3

1
] : !R~1

1
B3 T

1
S
12

(x)] C
X

1
f D

"[[G
f1

G
f2

G
f3

G
f4

] : [Gf1(x) Gf2 (x)]] C
X

1
f D , (33)
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where G
f1

, G
f2

, G
f3

and G
f4

are constant feedback gains proportional to the original state
variables X

1
, and Gf1 (x) and Gf2(x) are space-varying feedback gains proportional to the

"lter state variables f, which requires the partitioning of the Riccati matrix in the form

S
1
(x)"C

S
11

S
12

(x)

ST
12

(x) S
22

(x)D . (34)

The following are four matrix equations resulting from partitioning the di!erential Riccati
equation (31) as:

S@
11
"0"!S

11
[A3

1
!B3

1
R~1

1
RT

3
C3

1
]![A3

1
!B3

1
R~1

1
RT

3
C3

1
]TS

11
#S

11
B3

1
R~1

1
B3 T

1
S
11

!C3 T
1
[R

2
!R

3
R~1

1
RT

3
]C3

1
, (35)

S@
12
"!S

11
D

v
![[A3

1
!B3

1
R~1

1
RT

3
C3

1
]T!S

11
B3

1
R~1

1
B3 T

1
]S

12
!S

12
A

v
, (36)

S@T
12
"!AT

v
ST
12
!ST

12
[[A3

1
!B3

1
R~1

1
RT

3
C3

1
]!B3

1
R~1

1
B3 TS

11
]!DT

v
S
11

, (37)

S@
22
"!S

22
A

v
!AT

v
S
22
!ST

12
D

v
!DT

v
S
12
#ST

12
B3

1
R~1

1
B3 T

1
S
12

. (38)

Equation (35) is an algebraic Riccati equation that results when solving the deterministic
regulator problem associated with a sub-space constituted by the constant matrices
(A3

1
, B3

1
, C3

1
). Consequently, this leads to the constant gain sub-matrix K

11
which represents

the constant part of the perturbation continuous-space control law u
1
(x). It also represents

the link from the state variables X
1
to the input control u

1
(x) and is completely independent

of the properties of the disturbance. Equation (36) can be interpreted as a system of
"rst-order (eight in the present case) di!erential equations driven by coloured noises which
are the elements of the stochastic matrix D

v
. In fact, these elements are the response

accelerations and velocities of co-ordinates of the unperturbed system. These elements can
be found by simulating the unperturbed state-space form (19) in the space domain to obtain
them as response signals. Once we get these signals they are substituted to simulate the
above-mentioned "rst-order di!erential equations for "nding the continuous-space sub-
matrix S

12
(x) and the continuous-space gain sub-matrix K

12
(x) as well. The sub-matrix

K
12

(x) represents the space-varying part of the perturbation control law u
1
(x) and is

completely dependent on the speed variation characteristics. A third stage of the simulation
process can be implemented to obtain the response statistics of the perturbation response of
equations in equation (23). Of course, this third stage of the simulation process requires
some transformation to separate the random coe$cients in the matrix A

1
(x). Finally, there

is no need to solve the two equations (37) and (38) because the control law is independent of
them.

The solution of the algebraic Riccati equation (27) of the steady full-state control law can
be also solved by partioning. Thus, the control law u*

0
in a partitioned form is

u*
0
"[K

01
: K

02
] C

X
0

l D
"[!R~1

1
[B3 T

0
S
01

#RT
3
C3

0
] : !R~1

1
B3 T

0
S
02

] C
X

0
l D . (39)
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The optimal gain sub-matrices K
01

and K
02

are constants. Since the sub-spaces
(A3

1
, B3

1
, C3

1
) and (A3

0
, B3

0
, C3

0
) are the same, the fact that

K
11
"K

02
"[G

f1
G

f2
G

f3
G

f4
], (40)

abbreviates one of the optimization procedure steps. If one considers that the
elements of the weighting matrices remain the same in the two sub-problems (as in the
present study) this leads to two equal Riccati sub-matrices S

01
"S

11
. The optimum gain

sub-matrix K
02

,

K
02
"[Gl1], (41)

requires the solution of the following matrix equation as a result of the partitioning process:

0"!S
01

D
r
![[A3

0
!B3

0
R~1

1
RT

3
C3

0
]T!S

01
B3
0
R~1

1
B3 T

0
]S

02
!S

02
A

r
. (42)

The last equation can be interpreted as eight linear algebraic equations. The constant
weighting matrices are de"ned as follows:

R
1
"[r

1
], R

2
"C

r
2

0

0 r
3
D , R

3
"C

0

0D ,

where r
1

is a weighting parameter on the input control, r
2

is a weighting parameter on the
tire displacement and r

3
is a weighting parameter on the car body displacement.

7. JUSTIFICATION

Table 2 shows the e!ect of changing the intensity of speed variations, R
v
, on the

perturbation control force at a travel speed of 10 m/s. The steady control law is calculated at
a set of weighting parameters r

1
"1)0, r

2
"3)0]109 and r

3
"3)0]109 which provides

a moderate suspension structure neither sti! nor soft. Here, pu
0
is the r.m.s. value of the

unperturbed control law, pu is the r.m.s. value of the perturbation control law, and p is the
TABLE 2

R.m.s. values of the unperturbed and perturbation control
laws at constant travel speed <

0
of 10 m/s

R
v

pu
0

pu
1

(pu
1
/p

v1
)

(1/m) (N) (N) (N/(m/s))

0)005 600 18)5 257
0)01 600 25)6 251
0)05 600 54)8 242
0)1 600 72)7 226
0)2 600 103 189
0)3 600 147)5 151)6
0)4 600 194)7 108)5
0)5 600 246 64

1 v1
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r.m.s. value of the small speed variations. Since the approach is originally approximate, only
the average values of parameters reported in Table 2 are considered. By the aid of this table,
the following approximate average ratio is calculated:

(pu
1
/p

v1
)+162. (43)

Dividing by pu
0
and multiplying both sides of equation (43), by e,

(epu
1
/pu

0
)+0)27ep

v1
. (44)

Note that ratio (epu
1
/pu

0
) can be regarded as a convenient measure of the perturbation

control law to the steady one. Thus, one has only to de"ne the degree of speed #uctuation to
obtain a numerical value for such a ratio. Considering the r.m.s. value of speed #uctuation
to be only 5% of the nominal value <

0
"10 m/s, it follows that ep

v1
(0)5 m/s, and that

(epu
1
/pu

0
)(0)135. (45)

The above approximate average ratio is signi"cant and indicates that the small speed
variations can have a considerable e!ect on active suspensions of vehicles. In the present
example, an average value of the perturbation parameter, eN"0)57, is calculated. Most
importantly, attention should be paid to eN 2 rather than eN because the e!ect of speed
#uctuation is of second order. The assumption that any state variable,
X(x)+X

0
(x)#eX

1
(x), has a direct spectral density, SX(X)+SX

0
(X)#e2SX

1
(X ), and that

the cross-spectra SX
0
X

1
(X )"SX

1
X

0
(X )"0, holds true because of the two uncorrelated

exciting functions. Then the e!ect of the speed variations is of second order, and the results
presented are justi"able.

8. SYSTEM REALIZATION

It will be shown here that the control system operation can only be dependent on the
measured or estimated state vector X, i.e., neither the unperturbed state vector X

0
nor the

perturbation state vector X
1

is needed. Thus, a function of time total control law,
u(t)+u

0
(t)#eu

1
(t), can be realized as follows. Considering that K

11
and K

0f1
are equal,

then substituting for them, one obtains

u
0
(t)+G3

f1
X

01
(t)#2#G3

f4
X

04
(t)#G3 l1l(t),

u
1
(t)+G3

f1
X

11
(t)#2#G3

f4
X

14
(t)#G3 f1(t)f1 (t)#G3 f2(t)f2 (t),

(46)

where G3
fi

, i"1,2, 4, in t-domain correspond to G
fi

, i"1,2, 4, in x-domain.
Substituting equation (46) into equation (11) and rearranging, the total control force will be

u (t)+G3
f1

(X
01

(t)#eX
11

(t))#2#G3
f4

(X
04

(t)#eX
14

(t))#G3 l1l(t)

#e (G3 (t)f (t)#G3 (t)f (t)). (47)
f1 1 f2 2



Figure 2. Schematic diagram of control system realization.
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The fact that, Xi (t)+X
0i (t)#eX

1i (t), i"1,2, 4, is substituted into equation (47) to get

u (t)+G3
f1

X
1
(t)#2#G3

f4
X

4
(t)#G3 l1l

1
(t)#e(G3 f1 (t)f

1
(t)#G3 f2(t)f

2
(t))

+G3
f1

X
1
(t)#2#G3

f4
X

4
(t)#G3 l1l

1
(t)#G1 f1(t)f

1
(t)#G1 f2(t)f

2
(t),

(48)

where G1 f1 (t)"eG3 f1(t) and G1 f2 (t)"eG3 f2(t). Equation (48) can be represented in a more
convenient form as

u (t)+u
tin

(t)#u
tvr

(t), (49)

where u
tin

(t) is time-invariant and u
tvr

(t) is time varying. The value of e that is in u
tvr

(t) can be
employed as an adaptation parameter that adjusts the time-varying gains to match the
intensity of travel speed #uctuation. A schematic diagram of system realization is shown in
Figure 2.

9. RESULTS

The results begin with investigating the e!ect of changing the nominal car speed<
0
on the

steady response statistics of the car model. Two suspension structures are considered at two
di!erent road qualities according to the road classi"cation given in Table 1. The "rst one is
called relatively sti! suspension structure which results if the weighting parameters r

1
, r

2
,

and r
3
are assigned values of 1)0, 6)5]109 and 6)5]109, respectively. The other one is called

relatively soft suspension structure which results if the weighting parameters r
1
, r

2
and

r are assigned values of 1)0, 108 and 108 respectively. The calculations for both suspension

3



TABLE 3

Optimum feedback gains of the steady and perturbation control laws on a rough road

Speed Suspension G
f1

G
f2

G
f3

G
f4

Gl1 r.m.s. r.m.s.
<
0

system (N/m) (N/m) (N m/m) (Nm/m) (N/m) Gf1(x) Gf2 (x)
(m/s) (N/m) (Nm/m)

1 Sti! 52 871 !80 622 1465<
0

!7421<
0

25 175 703 43<
0

Soft 1882 !10 000 203<
0

!2767<
0

7045 1710 419<
0

10 Sti! 52 871 !80 622 1465<
0

!7421<
0

10 257 136 20<
0

Soft 1882 !10 000 203<
0

!2767<
0

2560 121 18<
0

20 Sti! 52 871 !80 622 1465<
0

!7421<
0

5821 35 4<
0

Soft 1882 !10 000 203<
0

!2767<
0

1890 49 9<
0

30 Sti! 52 871 !80 622 1465<
0

!7421<
0

6939 15 2<
0

Soft 1882 !10 000 203<
0

!2767<
0

2205 22 5<
0

40 Sti! 52 871 !80 622 1465<
0

!7421<
0

10 112 7 0)5<
0

Soft 1882 !10000 203<
0

!2767<
0

2750 9 3<
0

Figure 3. E!ect of the nominal speed on the r.m.s. steady response measures: (a) sprung mass acceleration;
(b) dynamic tire load; *]*, rough road with soft suspension; **, rough road with sti! suspension; }} } },
smooth road with sti! suspension; } }*} }, smooth road with soft suspension.
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structures have been performed by "rst considering a rough road. They start from a unity
car speed and go discretely to a maximum speed of 50 m/s. Examples of these discretized
solutions are shown in the "rst seven columns of Table 3 in the case of rough road. Then, all
the calculations are repeated by only considering smooth road instead of rough road.
Comparative plots of results are shown in Figure 3.

Also, the e!ect of the nominal car speed<
0
on both the perturbation and the total control

laws is studied. It was expected that the e!ect of small speed variations would be most



Figure 4. E!ect of the nominal speed on the r.m.s. suspension control forces: (a) sti! suspension; (b) soft
suspension; *L*, perturbation control law; **, steady control law; - - - - -, total control law with e"0)05;
}} } }, total control law with e"0)10.
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noticeable in the case when the vehicle runs on a rough road. So, the computations of the
steady control laws (outlined above) were extended to the perturbation and total control
laws for rough road only. As mentioned before, the "rst four gains of both the steady
full-state and perturbation control laws are equal. The r.m.s. values of optimum space-
varying gains of the perturbation control law are shown in the last two columns of Table 3.
Comparisons of the implemented control laws with either steady sti! or steady soft
suspension structures are shown in Figure 4.

Next, the e!ect of changing the intensity R
v

of the small speed variations on the
perturbation response is also studied. The steady control law is obtained at the same set of
weighting parameters considered in Section 7, r

1
"1)0, r

2
"3)0]109 and r

3
"3)0]109,

which provides a relatively moderate suspension control neither sti! nor soft. For
a considerable range of R

v
, a comparison of the r.m.s. steady and perturbed sprung mass

acceleration at two di!erent mean speeds of 10 and 30 m/s is shown in Figure 5.

10. DISCUSSIONS

In Table 3 the numbers multiplied by <
0

of gains proportional to velocity state variables
are values of these gains if the regulator problem was solved in the time domain, while gains
proportional to displacement state variables are the same in the two domains. Moreover,
gains proportional to acceleration state variables, if any, in x-domain equal their
corresponding gains in t-domain multiplied by <2

0
. Of course, values of response

displacements are equal (as assumed) in the two domains. Response velocities in t-domain
equal their corresponding velocities in x-domain multiplied by <

0
and response

accelerations must be multiplied by <2
0

to get them in t-domain. Although all the
calculations have been performed in the x-domain, we preferred to plot the results in all
"gures as functions of time to make them more sensible to the reader.



Figure 5. E!ect of the intensity parameter R
v

of the small speed #uctuation on the r.m.s. sprung mass
acceleration at two di!erent nominal speeds. The upper two lines refer to steady response while the lower ones refer
to perturbed response; **, <

0
"10 m/s; } }} }, <

0
"30 m/s.
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In Table 3, it is obvious that changing the constant speed <
0

does not a!ect values of the
"rst four gains of both the steady and the perturbed control law. These gains are
proportional to state vectors X

0
and X

1
of the original car model co-ordinates. Thus,

changing <
0

only "nds its impact on gains (Gl1 , Gf1(x), Gf2(x)) proportional to state
variables of the "lters implemented if the weighting parameters are held constant. The
space-varying gains Gf1 (x) and Gf2 (x) as a part of the perturbation control law are
stochastic zero-mean gains. They only contribute to the perturbation part of system
response. But, neither these gains nor the gain Gl1 of the steady full-state control law a!ect
the system stability.

As indicated in Figure 3(a) increasing the constant car speed<
0
signi"cantly increases the

steady sprung mass acceleration, especially, when the suspension is sti!. This logical result
re#ects the well-known practice of using soft suspensions for better ride quality. But, as
shown in Figure 3(a) using soft suspension leads to two defects in the steady system
performance: (i) much bigger steady dynamic tire loads than sti! suspensions, and (ii) great
increase in such loads as the nominal car speed increases. Figures 3(b) show that on
a smooth road the e!ect of increasing <

0
is much lower than on a rough road.

It is not a surprise to see by inspecting Figure 4 that the r.m.s. perturbation control law
decreases as the nominal speed <

0
increases. This can be readily deduced by inspecting

equations (13) of the perturbation set of equations. Also, it is considerable when the steady
control law is soft (Figure 4(b)) rather than sti! (Figure 4(a)). The total control input is
bigger than the steady one at low nominal speeds and smaller than it at high speeds. The
correlation between the two exciting functions, if considered, might have some impact on
this issue. This can be attributed to the contrary-wise e!ect of the nominal speed<

0
on both

the steady and the perturbation responses as shown in Figure 5.
As a "nal note, regarding the justi"cation of the perturbation method, it should be

noticed here that we have considered two external designs for the suspension structure, one
of them is very sti! (Figure 4(a)) with which the e!ect of the small variations is almost
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negligible. The other one is very soft (Figure 4(b)) with which the small speed variations "nd
most of their impact. In between these two selected structures the designer has a lot of
practical solutions which are expected to be justi"able. The solutions at 10 m/s for the
selected very soft structure (Figure 4(b)), might be rejected by the designer while the solution
at the same speed 10 m/s is justi"able for a moderate structure as shown in section 7 and in
Figure 5 as well. As a matter of fact, the softness of suspensions is always limited by the
attitude control of the vehicle and its handling capabilities.

11. CONCLUSIONS

A useful optimization procedure is developed for predicting small deviations of control
laws of active vehicle suspensions due to small travel speed variations. The perturbation
control law of the car model due to small speed variations is considerable at low travel
speeds and steady soft suspensions, and decreases as the travel speed increases. In cases of
light or even moderate suspension structures, the small speed variations produce e!ective
changes in the steady control force at both low and high nominal speeds. Although the
approach to the problem is approximate, the analysis indicates that there are noticeable
changes to the optimal steady control laws for even small deviations from constant travel
speed. The design procedure given here provides a framework to handle some parametric
uncertainty problems.
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APPENDIX A: THE PERTURBATION CRITERION

The basic perturbation transformations as presented in reference [10] are

<(x)"<
0
#e<

1
(x),

<2(x)+<2
0
#e2<

0
<
1
(x), (A1)

<(x)<@(x)"(<
0
#e<

1
(x))e<@

1
(x)+e<

0
<@

1
.

Substituting equations (A1) into the random coe$cients in equation (7), one obtains

a
1
(x)"a

10
#ea

11
(x)"m

t
<2

0
#e (2m

t
<
0
<
1
(x)),

a
2
(x)"a

20
#ea

22
(x)"m

b
<2

0
#e(2m

b
<
0
<
1
(x)),

b
1
(x)"b

10
#eb

11
(x)"0#em

t
<
0
<
1
(x),

b
2
(x)"b

20
#eb

22
(x)"0#em

b
<
0
<
1
(x),

(A2)

where a
10

, a
20

, b
10

and b
20

are constant coe$cients, and a
11

(x), a
22

(x), b
11

(x) and b
22

(x)
are space-varying coe$cients. Substituting the set of equations (A2) and equation (11) into
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the set of equations (8), it follows that

(a
10
#ea

11
(x))XA

t
(x)#(b

10
#eb

11
(x))X@

t
(x)#k

t
X

t
(x)"!(u

0
#eu

1
(x))#k

t
X

r
(x),

(A3)

(a
20
#ea

22
(x))XAb (x)#(b

20
#eb

22
(x))X@

b
(x)"(u

0
#eu

1
(x)).

It can be easily deduced that if e tends to zero, and<(x) approaches its mean value<
0
, the

set of equations (A3) becomes

a
10

XA
t
(x)#k

t
X

t
(x)"!u

0
#k

t
X

r
(x),

a
20

XA
b
(x)"u

0
,

(A4)

which are an alternative form of equations (5). The solution of the set of equations (A3) may
be sought in the form

X
t
(x)"X

t0
(x)#eX

t1
(x)#O

t
(e2),

X
b
(x)"X

b0
(x)#eX

b1
(x)#O

b
(e2),

(A5)

where O
t
(e2 ) and O

b
(e2) are functions expressed as second order perturbation terms.

Substituting equations (A5) and their derivatives into set (A3) and equating the
coe$cients of e on both sides in the resulting set of equations one obtains the following two
sets of equations:

a
10

XA
t1

(x)#k
t
X

t1
(x)"!u

1
(x)!a

11
XA

t0
!b

11
X@

t0
,

a
20

XA
b1

(x)"u
1
(x)!a

22
XA

b0
!b

22
X@

b0
,

(A6)

a
10

XA
t1

(x)#k
t
X

t1
(x)"!u

1
(x)!a

11
XA

t0
!b

11
X@

t0
,

a
20

XA
b1

(x)"u
1
(x)!a

22
XA

b0
!b

22
X@

b0
,

(A7)

The last two sets of equations can rewritten as follows:

XA
t0

(x)#(k
t
/a

10
)X

t0
(x)"!(1/a

10
)u

0
#(k

t
/a

10
)X

r
(x),

XA
b0

(x)"(1/a
20

)u
0
,

(A8)

XA
t1

(x)#(k
t
/a

10
)X

t1
(x)"!(1/a

10
)u

1
(x)!(a

11
/a

10
)XA

t0
!(b

11
/a

10
)X@

t0
,

XA
b1

(x)"(1/a
20

)u
1
(x)!(a

22
/a

20
)XA

b0
!(b

22
/a

20
)X@

b0
.

(A9)

Finally, substituting for values of the coe$cients of the last two sets of equations from the
set of equations (A2) yields two sets of equations (12) and (13).
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APPENDIX B: FORMULATION MATRICES
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